

Priority setting in polluted land management in relation to land use and soil properties

Jan Japenga¹, Jing Song², Yongming Luo²

ALTERRA Green World Research, Wageningen, the Netherlands
 Soil and Environment Bioremediation Research Centre, ISSCAS, Nanjing, PR China

To develop **methodologies** for:

- Priority setting in soil remediation based on "chemical" bioavailability
- Priority setting in soil remediation based on land use options
- Selection of appropriate soil remediation approaches at priority sites

PROLAND conference March 9-11, 2006, Puławy

Focus on heavy metals (Cd)

Priority setting in soil remediation based on <u>"chemical"</u> <u>bioavailability</u>

The approach is demonstrated using an hypothetical example case

Case:

A cadmium polluted region (e.g. around a zinc smelter with great spatial variation in (adsorbed) cadmium contents in the soil.

Which are the **most urgent areas** for soil remediation within the region ?

Cadmium content in the soil in mg kg⁻¹

Priority for the most polluted area?

Priorities should be defined on the basis of actual risks for:

- > Humans
- Ecosystems

Transfer to vegetation and groundwater

and therefore not in all cases on the basis of total (adsorbed) contents

"<u>Source-Pathway-Receptor</u>"

Source:

cadmium content in the soil

(including adsorbed fraction) or

cadmium concentration in the soil solution

dependent on soil properties

(clay content, organic matter content, pH)

Pathway/Receptor:

dependent on land use options

"<u>Source-Pathway-Receptor</u>"

Source:

cadmium content in the soil

(including adsorbed fraction) or

cadmium concentration in the soil solution

dependent on soil properties

(clay content, organic matter content, pH)

Transfer from the soil to the soil solution

PROLAND conference March 9-11, 2006, Puławy

fraction

Transfer to soil solution dependent on:

Soil pH

>

>

- Soil organic matter content
- Soil clay content
 - Other adsorbing surfaces

 $log[HM]_{soil solution} = a + b*log [HM]_{soil} + c*log(\% SOM) + d*log (\% clay) + e*pH$

(to be used in example case)

Potential risks exist in areas with no extremely high adsorbed cadmium contents in the soil !

and vice versa

Cadmium soil solution (mg/L)

Priority areas for soil remediation ??

site 1 is situated in a desert and site 2 is a residential area Cadmium soil solution (mg/L)

Further analysis necessary !

"<u>Source-Pathway-Receptor</u>"

Source:

cadmium content in the soil

(including adsorbed fraction) or

cadmium concentration in the soil solution

dependent on soil properties

(clay content, organic matter content, pH)

Pathway/Receptor:

dependent on land use options

"<u>Source-Pathway-Receptor</u>"

Pathway/Receptor: dependent on land use options

Priority setting in soil remediation based on <u>land/groundwater</u> <u>use options</u>

Example Drinking water obtained from groundwater

Combine the soil solution map with a map of groundwater table depth.

The example distinguishes between a "low" and a "high" groundwater table with its (<u>hypothetical and arbitrary chosen</u>) environmental quality standard for the soil solution.

Deep groundwater table (low leaching risks)

0.2 mg L^{-1} in soil solution

Shallow groundwater table (high leaching risks)

1.0 mg L^{-1} in soil solution

1,0 mg L^{-1}

 $0,2 \text{ mg } \text{L}^{-1}$

Map or the area with hypothetical threshold values for groundwater indicated

obtained from groundwater

0,5-1,0
0,0-0,5
-0,5-0,0

Example Influence of land use

Combine the soil solution map with a map of local land use.

The example distinguishes between residential areas, agricultural areas and forest areas, each with its (<u>hypothetical and arbitrary</u>) environmental quality standard for the soil solution.

inhabited areas:	10 mg kg ⁻¹ in soil
agricultural areas:	0.2 mg L^{-1} in soil solution
forest areas:	0.1 mg L^{-1} in soil solution

inhabited area
agricultural area
forest area

- = standard: 10 mg kg⁻¹ in soil
- = standard: 0.2 mg L^{-1} in soil solution
- = standard: 0.1 mg L^{-1} in soil solution

Priority setting in soil remediation - summary

 \bigcirc Most polluted area

Using the soil solution concept, high adsorbed Cd contents in the soil do not necessarily lead to high remediation urgency

Priority setting in soil remediation - conclusion

Land use options and soil properties are important decision making factors.

Choice between:

- Land use change towards less sensitive land use
- Polluted land management to contain risks, e.g. regarding groundwater protection, crop safety
- Physical removal of pollutant or "sealing" in cases of high pollution levels and limited size of the site

